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Abstract

Recently, some behavior analysts have recommended the use of computer simulations to augment,
or even replace, verbal and mathematical interpretations of behavior. This report raises the
question as to what computer simulation adds to other analyses of behavior. We present examples
of the human behavior of arithmetic calculation in order to illustrate the benefits of computation
even where the results are known. The claim is made that mechanical computation (computer
simulation) can have the same sorts of benefits, magnified by the power and speed of the electronic
computer.
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Resumo

Ultimamente, alguns analistas do comportamento tém recomendado o uso de simulag@es de com-
putador para aumeitar, ou mesmo substituir, as interpretagdes verbais e mateméticas do comporta-
mento. Este estudo investiga a questio sobre o que a simulagdo de computador acrescenta a outras
anélises de comportamento. Apresentamos exemplos do comportamento humario de fazer calculos
aritméticos para ilustrar os beneficios da computagio, mesmo quando os resultados séio conheci-
dos. PropGe-se que a computagiio mecénica (simulagio de computador) pode ter os mesmos tipos
de beneficios, ampliados pelo poder € velocidade do computador eletronico.

Palavras-chave: Simulagio de computador, comportamento verbal, processo neural.

To the complaint ‘There are no pecple
in these photographs,’ | respond, 'There are
always two people; the photographer and the
viewer.’

computer simulation adds, if anything, to the
analysis of behavior. For instance, if we know
the contingencies (i.e., the inputs in computer
Ansel Adams e @ 1 puts . P
terms) for our experimental design, the

The recent interest in computer simulation functional relations (the algorithm) from our

within behavior analysis (Hutchison &
Stephens, 1987, Kehoe, 1989; Staddon &
Zhang, 1991; Donahoe, Burgos & Palmer,
1993; Donahoe & Palmer, 1994; Tryon, 1995a,
1995b; Deonahoe, Palmer, & Burgos, 1997;
Burgos, 2000; Kemp & Eckerman, 2000) has
led some behavior analysts to ask what

analysis (either qualitative or quantitative), and
the behavior (the outputs) from our data, what
more will computer simulations teach us?
Donahoe and Palmer (1994), argue that
computer simulations provide a formal mode of
interpretation that offers specific advantages
over more traditional verbal interpretations
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arch, etc., please contact: Steven M. Kemp, Psychology Dept., Davie Hall, CB#3270, University of North Caro-
lina, Chapel Hill, NC 27599-3270. e-mail: steve kemp@unc.edu - URL: http://www.unc.edu/~skemp/
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(where implications of a behavioral analysis are
expressed in words). The use of formal modes
of interpretation is called the quantitative
analysis of behavior (QAB). Many such analyses
do not require computers. Some quantitative
analyses that do require computers, use them for
aslightly different purpose than the simulations
used by modelers such as neural network
researchers. (We will describe this difference
later.)

We begin with Donahoe and Palmer’s
(1994) description of scientific analysis and
interpretation to set our question for describing
what computer simulation adds beyond other
types of QAB.

1. Experiments tell us about the actual
behavior of actual animals.

2. Verbal interpretations show us how the
principles discovered by the experimental
analysis of behavior explicate behavior
we see in the world around us.

3. A quantitative analysis formalizes this
interpretation. Our question is: What can
a computer simulation add to this?

The answer is twofold. First, the use of
computers in general provides a particular form
of stimulus control that resembles tacting (i.e.,
verbal behavior under control of discriminative
stimuli, Skinner, 1957, p.81 ff.). Second, the
use of computers for simulation makes this form
of tacting available for the purpose of expanding
verbal as well as formal interpretations of
behavior. The remainder of the present paper
elaborates on these two issues.

What computers do

Computers were originally designed as
scientific instruments.
many other forms of human endeavor, they

Despite their use in

retain the basic functional character of any
scientific instrument. As Skinner puts it in his
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bhook, Verbal Behavior (1957, p. 428), a
scientific instrument “extends our responses to
nature by... clarifying events which can serve
as stimuli.” In the case of the computer, the
events arc the settings of millions of electrical
switches. (Ordinarily, these settings are
mechanical translations of human readable text
constituting the computer program and
operating system.) These settings specify
manipulations according to a logical system
known as the propositional calculus. The
clarification is dueto a mechanical process that
mimics a form of response manipulation called
the substitution of terms (Skinner, 1957, pp.
423-424).

Substitution of terms occurs, for
example, when humans edit text, crossing out
one word and replacing it with another.
Substitution of'terms can be governed by highly
restrictive systems of rules such that the
substitutions can be carried out by mechanical
means. Algebra is a good example, where
sequences of letters and symbols can be
exchanged only for certain others and
individual letters can be exchanged for certain
others. In computers, substitution allows us to
see the implication of the programmed settings
for the switches.

In English, prior to the 1940s, the word
“computer” was defined in the dictionary as the
profession of persons who calculated numerical
results for mathematical tables. As such,
computing specifies a type of behavior.
Scientific, mathematical, and logical behavior
are elaborate forms of behavior that have
evolved due to their reliability in contributing to
successful action on the part of listeners.
According to Skinner (1957, p. 418), the rules
of logic and the rules of mathematics effectively
govern certain types of verbal behavior on the
part of the speaker that are especially effective
in governing behavior on the part of the listener.
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So, for example, we can use numbers to obtain
more precise control over the listener’s behavior
by saying, “Please bring me five apples,” than
by saying, “Please bring me some apples.” A
surprisingly large proportion of the speaker’s
precurrent responses used in editing logical and
mathematical verbal behavior consists in the
substitution of terms. For instance, “some” can
be replaced by “five,” but “three” cannot be.
Within limits, these precurrent responses can be
implemented by mechanical means and this is
what a computer does.

The logico-mathematical manipulations
of the computer program transform a text
authored by the computer programmer (the
input) into another text (the output) by means
of a long and complex series of substitutions
(and other related transformations). These
manipulations are governed by two separate
sets of rules:

I. The computer itself, together with its
operating system and application
software, contains preset rules that insure
that the transformations conform to the
rules of logic and arithmetic.

2. And the computer program, provided by
the programmer, contains specific rules
to govern the computer’s operations so
that the overall transformation clarifies
events in the manner desired.

Clarification as the revelation of subtle
properties

According to Skinner (1957, p. 428), an
important characteristic of many experimental
methods is to “bring responses under siricier
stimulus control by manipulating states of affairs
so that relevant properties are emphasized”
This is also a benefit of much scientific
instrumentation. A good example is the cumulative
recorder, which transforms switch closures into
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changes in the motion of a pen on paper so as to
emphasize the temporal patterning of responding.
We propose that the transformations of text
effected by the computer do something very
similar to what is accomplished by a cumulative
recorder. Computer operations also bring the
reader’s behavior under stricter stimulus
control by emphasizing relevant numerical
properties of either the theoretical assertions,
the data, or the relation between them.

Numbers. Since the properties of
interest are for the most part numerical, we need
to consider just what sort of properties numbers
are from a behavioral perspective. (In our
presentation here, we focus on the numerical
rather than the other uses of computers.) In
tacting, numbers are controlled by quantitative
properties of the stimulus. As such, the
numerical tacts of counting and measuring, etc.,
are instances of gemeric extemsion (Skinner,
1957, p. 91-92). One type of generic extension
is where a single (abstract) property controls
responding, as when a red chair and a red ball
both evoke the word, “red.” Numbers clearly
are generic extensions in this sense. The
abstract property of having a count of 4 is shared
by the cardinal points of the compass and the
Gospels. The abstract property of having a
measure of 4.3 is shared by my cat’s weight
measured in kilograms and the length of my
study measured in meters.

Numbers specify properties that have
properties. (This is not unusual. Red is a
property that has the property of being the color
with the lowest frequency in the spectrum.)
Numbers are unusual in that they have a very
large number of properties (such as being even
or odd, being prime, being the square of one
number and the square root of another, etc.).
These properties are related to one another in a
large and elaborate hierarchical system of
relations.
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Revelation of numerical properties.
Due to the large quantity of complex properties
for any one number, not to mention a data set
full of numbers, the computer is particularly
useful for specifying and emphasizing those
few properties relevant to an analysis. The
computer accomplishes this change in emphasis
by substitution of terms. The large quantity of
properties for each number make for a large
quantity of terms equivalent to (and thus
substitutable for) each number. The number 6,
for instance, is the successor of 3, the product of
2 and 3, the sum of 1 and 5 (as well as the sum of
5678 and —5672), the arithmetic inverse of -6,
the multiplicative inverse of 1/6, the square root
of 36 and the lowest perfect number, etc. By
substituting any one of these terms for 6,
different properties are revealed.

Logico-mathematical transformations of
the type able to be performed mechanically by a
computer can manipulate complex arrays of
numbers in such a way as to emphasize
properties deemed relevant by the computer
programmer. Borrowing an example from
Donahoe & Palmer (1994, p. 271}, a very
simple computer program could be constructed
that would take 67 as input and give , “the
smallest prime number greater than 617 as
output or vice versa. More complex programs
can take larger arrays of numbers (coded as
switch closures) and manipulate them so as to
emphasize even more obscure properties.

Epistemic uses of computation in simulation

We have seen how computers can reveal
‘things about numbers that are not obvious from
simple observation oreven graphing. And when
those numbers are experimental data, the
advantages of using a computer seem clear. But
computer simulations are more than just data
transformations. Simulations are special types
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of computation where the time course of the
computation is intended to paralle] the time
course of some real world events. The inputs to
a computer simulation are models of antecedent
events. The algorithm is a model of causal
relations. The computation is a model of
temporal-causal processes. The outputs are
models of consequences. In the computer
simulation of behavior, the causal relations and
processes are behavioral. We seek to show that
when numbers are involved in such calculations,
the revelation of their occult properties can be
useful to the analysis of behavior.

Arithmetic examples The uses of
clarification in computations where inputs,
processes and outputs are all known can be
illustrated by examples drawn from simple
arithmetic problems. Consider the following
problem:

|+
|

The inputs are 3 and 4. The process is
addition. The output is 7. Both the inputs and
the output are different texts specifying the
same number, seven, but emphasizing different
properties of that number. The text above the
line specifies seven as the sum of three and four.
The text below the line specifies seven as the
number standardly designated by the numeral
“7”. The computation involved transforms the
text specifying the sum into the text specifying
the numeral.

For most adults, the use of a computer to
perform the calculations specified in the above
example would be superfluous. Not only can
most adults rapidly perform this calculation “in
their heads,” but the text reading, “3+4" is most
likely a stimulus that readily evokes most of the
same responses as does the numeral, “7”, These
two texts are homonyms (Skinner, 1957, p.
118).
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A slightly more complex problem:

111
+ 42
153

illustrates a case where the calculation can still
be performed rapidly, with very high probability
of giving the correct response (i.e., the response
most reliably reinforced by the mathematical
community). Here, the text specifying the sum
is most likely a novel stimulus to which the
reader has never been conditioned. The sum
evokes no responding. In cases such as this, the
symbol, “+”, which mands the type of
computation required, will most likely control
responding. The reader will compute theresult.
It is also possible that the reader will
simply look beneath the horizontal line to the
text specifying the output, “153”, and trust the
authors to have calculated correctly. In the
present context, the more complex the
calculation, the more likely this is to occur, as
the next example illustrates:

795

+837

1632

But what of other contexts? Suppose you
are giving an important exam to your students.
The problem is provided in a handbook,
complete with the answer. You use the problem
in the exam, leaving the answer for grading
purposes. If the exam is important enough and
the problem counts for enough points, you are
more likely to perform the calculation (or have
it performed) in order to check to make sure that
there is no error in the handbook. Problems and
solutions given in teaching materials do have
errors on occasion.

When the calculation is even more
complex, readers may no longer even trust their
own computational skills and choose to rely on
mechanical means:
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795
X 837
665415

(as did we).

In the foregoing examples, the textabove
the line is always a homonym for text below the
line, at least for a mathematical audience. But
the degree to which the relational property of
homonymy controls the reader’s responding
varies from strong to weak. In the final example
above, homonymy exerts such weak control
that, in the appropriate context, the reader is
likely to take steps to clarify whether or not the
property is present at all. And the computer is
the perfect instrument for such clarification.
When the text above the line is entered into a
calculator (a simplified form of computer to be
sure), and the numeral-homonym operator
(“=") button is pressed, the text below the line
appears in the display. This is what Skinner
(1957, p. 425-428) calls confirmation.

In the first example above, hemonymy
exists for the mathematical audience and also
for the general reader. In the later examples,
homonymy in Skinner’s behavioral sense does
not exist for the general reader first approaching
the text. It is only after the confirmatory
calculations are performed that the text above
the line may come to exert the right sort of
stimulus control so that the two texts exhibit
homonymy. And the ability of the text above the
line to exert such stimulus control may not
perdure. As Skinner notes, any statement
asserting the homonymy of the two texts may be
a tact or an intraverbal depending upon the
intervening behavior, (Clearly, there is a
difference between the presence of homonymy
in the form of having each of the two stimuli
control the same responding and the obvious
presence of homonymy in the form of the two
stimuli together controlling such utterances as,
“These two are equal.”)
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In conclusion, the first use of a computer
insimulation is confirmation. This can be done
when all of the relevant components are known
from prior analyses. [t remains to consider what
other uses there may be for computer simulation
when different elements of the analyses —
inputs, processes, or outputs — are wholly or
partially missing.

Marshalling stimuli. Skinner (1969,
p.136-138) speaks of constructing discriminative
stimuli as central to the process of problem
solving. Donahoe & Palmer (1994) speak of
marshalling stimuli, generating stimuli in
conjunction with other stimuli that increase the
probability of responding that generate further
stimuli that eventually produce a response that
is the solution to the problem. Ifany of the three
elements of the analyses are absent, then the
situation can be thought of as a problem to be
solved by filling in the missing pieces. When
useful stimuli are generic extensions of occult
numerical properties of any of these elements,
computers may come in handy by assisting in
the process of constructing stimuli for the user
to marshall.

The most straightforward case is when
the inputs and process are known and the outputs
are not known. The standard programming
solution is to encode the inputs and apply the
process in the form of a computer program. The
computer then generates outputs which can be
interpreted as predictions of the outcome of the
real world events. The problem is that it is very
rare that processes complex enough or important
enough are sufficiently well understood to write
a computer program that encodes the process
precisely. Even in physics, only the simplest
problems can be managed in this way. And the
simplest problems are laboratory phenomena,
The simplest physical circumstances of
everyday life are far too complex to be adequately
simulated at the present time (Hobbs, Blenko,
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Croft, Hager, Kautz, Kube & Shoham, 1985;
Donahoe & Palmer, 1994, p.127). One need only
look at the cartoonish quality of Virtual Reality
games on the computer to verify this fact,

The most common approach to handling
prediction when the processes are only partially
understood is statistical estimation. A good
example of this in the case of a physical system
is weather forecasting. Understanding of the
physical processes is limited. Knowledge ofthe
antecedent conditions is limited. The outcomes
are unknown. Using highly sophisticated
statistical models and the largest and fastest
super-computers in the world, moderately
acceptable predictions are made on a just-in-time
basis from day to day for some parts of our
world. Even under the best circumstances, this,
the easiest form of computer simulation is
terribly difficult.

The next most straightforward case is
computing the inputs when the process and the
outputs are known. The very first use of
computers, calculating tables for artillery,
involved this problem. Newton’s Laws of
Motion are known. The direction and distance
of the target is known. What is needed is the
angle of elevation for firing. There are three basic
techniques: function inversion, “brute force,”
and search. In function inversion, the mathematical
inverse of the function characterizing the
process is calculated and encoded as a program.
The outputs are input into the inverted process
and the inputs appear as output. The main
problem is that not all mathematical functions
are invertible; it is not always possible to
determine if a function is invertible or not; and
the inverse of some invertible functions cannot
be calculated.

For very small problems, the brute force
method involves calculating outputs for all
possible inputs over a given range. This
provides a table relating all inputs and outputs
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over that range. The firing tables calculated for
artillery were such tables. Inputs are calculated
by reading the table backwards, looking up the
outputs and reading off the matching inputs.
Most problems are too large for the brute force
method. Instead, for a given set of outputs, the
space of all possible inputs is systematically
searched to locate a set of inputs that will
produce the given outputs. There is a
tremendous variety of search methods,
including gradient descent (Rumelhart,
MecClelland & The PDP Research Group,
1986), simulated annealing (Press, Flannery,
Teukolsky & Vetterling, 1986), genetic
algorithm (Holland, 1975), and tuning (Cox,
Park, Sacks & Singer, 1992).

The final case, and by far the most
difficult, is when the inputs and outputs are
known, but the process is unknown. There are
no general solutions. The usual approach is to
assume that the process is one of a specific set of
algorithms and to search the space of such
algorithms. Traditional statistical regression
does this for various sets of polynomial
functions. The most general technique searches
the space of Turing functions (Biermann,
1972). The meost important problem is that, if
the actual process is not in the target set, these
technique give wrong answers.

Consider a variant on the last example
given above:

795

837
665415

The problem is to find out what operation
on the first two numbers will give the third as a
result. If we know that the operation is one of
addition, subtraction, multiplication, or
division, then the problem is easy. But if the
operation might be any mathematical function,
the problem could be impossibly difficult.
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The best known problems of inferring
processes are number series problems.
Borrowing a set of examples from Donahoe &
Palmer (1994, p. 282):

1 -2-4-7-11-16-22-
1 -3-7-15-31-63-__
1 -2-6-21-88-

The problem is to find out what single
operation on each number in the sequence will
give the next number. This operation is then
applied to the last number in order to fill in the
blank at the end. Even when the problems are
restricted to sequences of monotonically
increasing integers, these problems are by no
means trivial.

The role of computers in
scientific interpretation

What role can the elucidation of obscure
numerical (and related) properties have in the
scientific interpretation of behavior? One role
has already been suggested, the transformation
of actual experimental data. Computers can and
do take the place of cumulative recorders,
translating behavioral data from time.event
format (tables listing events with each row
labeled in order with the time of occurrence,
Church, 1997) into cumulative records.
Further, in QAB, when a functional analysis is
expressed in terms of general relations, these
relations can be taken as premises and
predictions of more specific relations can be
inferred as conclusions. For instance, in research
on the Matching Law, the slope and intercept of
the prediction line are calculated from the data
together with the law itself. When the inference
is too complex, a computer can be helpful.
However, neither of these uses of the computer
is ordinarily considered a computer simulation.
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Like quantitative analyses, simulations
generally involve interpretation of functional
relations that themselves are derived from
experimental analyses. Like data transformation,
the output of simulations is often expressed as a
time course of hypothetical behavioral events,
rather than as a specification of predicted
relations. In combining these two features,
computer simulations offer unique contributions
to scientific interpretation.

Interpretation without Simulation

In order to illustrate the unique benefits
of computer simulation, it will be useful to
briefly mention the benefits of other sorts of
computer calculations to scientific interpretation.
In the case of the computer control of animal
experiments and computer transformation of
animal data, the benefits are straightforward. In
the case of computer control, the reinforcement
schedule is specified in a parametric form, as a
set of premises. At each point in time, the
computer infers the appropriate settings for the
operanda, discriminative stimuli, feeder, etc. In
the case of data transformation, numerical
properties of the behavioral data stream, the
best example being response rate, are
emphasized. This purpose is served identically
whether the mechanism is a cumulative
recorder or a computer.

In the case of quantitative analysis, the
role of the computer is somewhat different. The
model of the functional relations is encoded into
the computer’s program as a set of general
premises. The computer then infers specific
behavioral predictions. The only difference
between this and computer simulation is that, in
computer simulation, specific predictions as to
the next behavioral event are made in sequence,
on a moment-to-moment basis. Any other sorts
of predictions are still quantitative analyses, but
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not computer simulations. Quantitative analyses
include the inference of functional relations that
will appear in specific circumstances. For
mstance, a computer can be used to predict
relative proportions of responding for other than
VI-VI concurrent schedules from the Matching
Law (Herrnstein & Heyman, 1979). These sorts
of inferences predict synchonic (time
independent) features of the data based upon
synchronic principles.

Simulation for Interpretation

The uses of simulation include cases of
confirmation where inputs, processes and
outputs are known, as well as cases of using the
computer to infer or estimate values for
unknown components,

Confirmation. Psychological experiments
derive real outputs from real inputs. Behavioral
theories postulate accounts as to how those
outputs have been derived. Verbal interpretations
are most often used to confirm that, in the case
of the particular experiment, the behavioral
theory in question predicts the results actually
obtained in the experiment. As Donahoe &
Palmer (1994, p. 128-129) note, computer
simulations, properly done, are less subject to
the type of miscalculations made by humans
than humans are. As Skinner (1957, pp.
425-426) suggests, confirmation is best
obtained by using a variety of means subject to
different sorts of errors. Using the independent
variables of the experiment as inputs and the
behavioral theory as the program, the outputs of
the computer simulation are compared to the
experimental results, confirming (or
disconfirming) the verbal interpretation to the
effect that the theory predicts the results
obtained (Church, 1997; Kemp & Eckerman,
2001).
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Missing outputs. The most difficult and
challenging use of computer simulation is when
the inputs and processes are known, but the
outputs are unknown. The paradigm case is
when a theory has been confirmed against many
previously completed experiments and then a
simulation is run to make a prediction for an
experiment not yet performed. This sort of thing
only happens for the best of theories predicting
the simplest of experiments. As noted earlier,
event the best of theories cannot be used to
predict simple real world events.

The more intricate the prediction, the
more difficult the requisite computation.
Synchronic properties are inherently less
intricate than (diachronic) moment-to-moment
sequences of events. Quantitative analyses
focussed on the prediction of specific properties
of the data can be computed much more easily
than the simulation of behavioral sequences.
Conversely, the most simple predictions do not
require use of the computer at all. In sum, the
tremendous difficulties in prediction due both
to the inadequacy of current theory and to the
ineliminable complexities of the world (Donahoe
& Palmer, 1994, p.127) render the marginal
utility of automatic computation very small.
The fantasy that computer simulation can be
used to replace animal experimentation will
remain unfulfilled for many, many decades, if
not forever.

Missing inputs. After confirmation, the
second most important use of simulation is the
estimation of unknown input values. This
process is referred to as setting free parameters.
It is both technical and subsidiary to the process
of confirmation. In psychology, a common
variant is when the model requires more types
of input than are available from the experimental
design. In mentalistic models, there may be two
sets of input parameters. One set, called fixed
parameters, are assigned values based on the
experimental design (stimuli, contingencies,
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etc.). The other set, whose values correspond to
no aspect of the observable features of the
experiment, may be assumed in some scientific
traditions to correspond to internal unobservable
aspects of the behaving organism. When free
parameters are included in behavioristic
models, they are usually not given any such
surplus meaning.

In order to estimate values for free
parameters, all of the various search techniques
can be and are used. (The presence of the fixed
parameters does not affect use of these
techniques.) Non-search techniques are generally
inapplicable. There are important psychometric
issues swrrounding the use of free parameters
that are beyond the scope of the present paper.

Unknown processes. The greatest
challenge in psychology, and the thing that
most prominently divides one approach to
research from another, is coping with the study
of behavior with so little knowledge of the
neural processes involved. Were there effective
computational techniques for calculating
unknown processes given known inputs and
outputs, this would provide an important
technique for resolving this age-old dilemma of
psychological inquiry. But, as we noted above,
there are no such techniques. The unknown
process can only be hypothesized.

After that hypothesis is made, the
computer may come into play asa confirmatory
tool, but the computer has little to offer by way
of its own hypotheses. Ultimately, human effort
in biobehavioral research will be the solution to
improving our hypotheses about intervening
gvents.

Discussion

When the core of a verbal interpretation
of behavioral principles is encoded into a
computer simulation program, we are able to
check the reasoning underlying that interpretation
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in three ways. First, because the encoded
version is not only formal, but also designed to
be sufficient to infer moment-to-moment
activity, we find gaps in the original logic that
need to be filled in. One of the most important
benefits of logic is the ability govern the
listeners® behavior more strictly than ordinary
language. Part of that strictness is enabling the
listener to discriminate lacunae in the speaker’s
reasoning (and, in principle, to punish
contingent on such lacunae).

Implementation of moment-to-moment
streams of output on the computer also provides
strict punishment, because any computer
program designed to provide streams of
real-time data is extraordinarily sensitive to
programming error. If the behavior analyst
performing verbal interpretation makes a slight
error, neither pen nor paper complains, and the
reader may fail to detect the error. If the
behavior analyst programming a computer
simulation makes an error, the computer either
produces wildly nonsensical results, or, more
likely, just stops dead in its tracks.

Second, once the Compllter program is up
and running, the reader gets to confirm the
author’s reasoning, just like the reader does
when she reads a verbal interpretation. The only
difference is that as a scientific instrument, the
computer simulation has clarified matters by
emphasizing the most important results for the
reader.

Third, the power and speed of the
electronic computer make it possible to make
inferences from the data (or from the initial
verbal interpretations) quite impossible in the
lifetime of one or even several inquirers.
Additional inferences mean additional
opportunities to confirm or disconfirm. When
there is no opportunity for any confirmation of
the initial verbal interpretation, computer
simulation may be the only opportunity.
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