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Abstract

This work aims to fill in the gap between cultural behavior analysis and recent computational
approaches to the study of social dynamics. We first introduce a game-theory infused unders-
tanding of norms and metanorms evolution and how agent-based models are used to simulate
and analyze the emergency of normative phenomena. Then we argue that this method is
in line with the cultural behavior analysis approach to the evolution of culture, offering a
common framework for further theoretical and heuristic developments for researchers in
the field. We proceed by outlining Axelrod’s Metanorms Model, followed by a tutorial on its
implementation with NetLogo programming language. Finally, two experiments are carried
out using this framework, and the implications of the results, along with future direction of
research, are discussed from a Skinnerian perspective.

Key words: agent-based model, norms, metanorms, social simulation, behavior analysis.

Resumo

O presente trabalho se propde a preencher a lacuna entre a andlise comportamental da
cultura e recentes abordagens computacionais no estudo da dindmica social. Inicialmente serd
introduzida uma perspectiva inspirada na teoria dos jogos de como normas e metanormas
evoluem e como modelos baseados em agentes sdo usados para simular e analisar a emer-
géncia de fendmenos normativos. Em seguida, argumenta-se que este método estd alinhado
com a abordagem analitico comportamental sobre a evolu¢do da cultura, oferecendo um
enquadramento compartilhado para futuros desenvolvimentos tedricos e heuristicos para
pesquisadores na area. O texto prossegue apresentando o Modelo de Metanormas de Axelrod,
seguido por um tutorial sobre sua implementacdo usando a linguagem de programacao
NetLogo. Finalmente dois experimentos sdo conduzidos utilizando este enquadramento e
as implicacoes destes resultados, bem como futuras direcdes para pesquisa, sdo discutidas a
partir de uma perspectiva skinneriana.

Palavras-chave: modelo baseado em agentes, normas, metanormas, simula¢do social,
analise do comportamento.

Resumen

Este trabajo tiene por objetivo llenar el vacio entre el andlisis conductual de la cultura y
recientes abordajes computacionales usadas en el estudio de las dindmicas sociales. Primero
introduciremos una perspectiva, inspirada en la teoria de los juegos, de como normas y
metanormas evolucionan y como los modelos basados en agentes son usados para simular
y analizar la emergencia de fendmenos normativos. A continuacion, postulamos que este
método estd en concordancia con el abordaje analitico comportamental de la evolucion de
la cultura, ofreciendo un marco comun para posteriores desarrollos tedricos y heuristicos
de investigadores en el area. Posteriormente, se procede a presentar el modelo de Normas y
Metanormas de Axelrod, seguido de un tutorial sobre suimplementacién usando el lenguaje
de programacion NetLogo. Finalmente, dos experimentos son conducidos usando este marco
tedrico, y las implicaciones de sus resultados, asi como orientaciones para futuras investiga-
ciones, son discutidas desde una perspectiva skinneriana.

Palabras clave: modelos basados en agentes, normas, metanormas, simulacion social,
analisis del comportamiento.
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Societies are able to prosper, in part, because individuals are often willing
to help others even when it incurs costs for themselves (Rand & Nowak,
2013). The existence of prosocial behavior challenges the basic game-the-
oretic assumption that humans are narrowly concerned with self-interest
(Binmore, 1998). Prosocial behavior may be supported, in part, through
third-party sanctioning, acts of approval or condemnation provided by an
uninterested audience. When a transgression occurs, sanctioning behavior
is more effective when it is administered by a third-party, as the victims of
violations often lack the resources to retaliate or are incapacitated by the
norm violation (Fehr & Fischbacher, 2004). To demonstrate the pervasiveness
of third-party sanctioning, Fehr and Fischbacher (2004) allowed participants
to act on the result of a Dictator Game by spending their own resources
to decrease the dictators’ earnings. Indeed, many participants opted to
punish selfish dictators. Similar results have been observed using different
procedures and various types of social dilemmas (Fehr & Gachter, 2002;
Henrich et al., 2006).

Examples of sanctioning behavior raise the question of why third-parties
sacrifice resources to influence the outcomes of other parties. Sanctioning
may induce prosocial behavior, but what motivates third-parties to engage
in costly acts of sanctioning, be it rewards or punishments? Sanctions can be
interpreted as a second-level public good (Yamagishi, 1986) because they be-
nefit the collective interest by encouraging prosociality, a group level benefit,
while bearing a cost to the individual sanctioners (Horne, 2007). Some have
noted the danger of infinite regress in this reasoning (e.g. Kiyonari & Barclay;,
2008), as any prosocial behavior would require a higher-level explanation,
making even the most trivial altruism act theoretically intractable (but see
Horne, 2008; Sober et al., 1999 for opposing arguments).
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Building on this understanding, Horne and Mollborn (2020) proposed
a Relational Theory of Norm Enforcement, in which the social relations
between members of a group play a fundamental role. Instead of exclu-
sively focusing on personal benefits and costs of her behavior, a group
member also cares about maintaining her social relations. Most of the
tasks performed by adults in modern society presuppose the presence
or help of others, and, in this way, maintaining an active and favorable
social network is of the most importance (Guerin, 2003). Apart from the
direct benefits of their behavior, members of a group have a collective
interest in controlling each other’s behaviors, rewarding good deeds and
punishing wrongdoings. In this way, the sanctioning of metanorms (i.e.
a second order norm enforcement) may be supported by mechanisms of
costly signaling (Hardy & van Vugt, 2006), in which the sanctioner acts
to broadcast a favorable reputation for future interactions. Any costs of
the metanorm sanctions will be canceled out by the increased quality of
future interactions.

One important aspect of this model is that there are at least two patterns
of behavior happening in the group: one in which the agents have to decide
to contribute or not to a public good or a n-players prisoner dilemma, and
another where the agents choose whether to sanction the non-cooperators.
While the former may be related to the executive decisions agents face
(decisions that impact how much resources they will have), the latter is
related to how the resources should be generated (norms), and how to
what to do with those who do not apply the norm (metanorms). Axelrod
(1986) synthetized this dilemma in a model in which the costs of third-party
sanctions are collectively borne by participants in the group. The enforce-
ment of norms on how to conform to norms (metanorm) may bring about
the necessary conditions for the maintenance of social norm and, being
the norm beneficial to the average group payoff, the metanorm enforcers
would be selected for.

The author describes a game in which norms, over certain circums-
tances, can evolve and even settle down in a community (Axelrod, 1986).
His model considers a set of few variables which control the costs and
benefits that an individual would obtain if she defected, in an environ-
ment in which it is possible that someone else observed her defection,
and decided to punish. In the game, the norms were represented as the
mutual agreement not to defect, and when an individual decides to break
them, he or she could be punished. The model also incorporates a cost
that the observer must pay to punish the transgressor, as well as a hurt
that infringes on the other group members each time a member decides
to defect. The relationship between the gain, the punishment and the hurt
values defines the establishment of the norm. The model also includes a
second level of norm enforcement, metanorm, in which a second player
has to decide if to punish those who did not punish the defector, and as in
the norm enforcement, the metanorm enforcement has defined cost and
hurt values.
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The analysis advanced by the author differs in method from the pre-
vious works presented. Whereas traditional research on the topic by psy-
chologists and economists focus on verbal theoretical advancement closely
tied with empirical laboratory experiments (Smaldino, 2020), Axelrod’s
work borrows the Agent Based Modelling (ABM) method from the emerging
field of Computational Social Science (Epstein, 2006). Presenting itself as a
third complementary way of building theory (Ostrom, 1988), ABM aims at
explaining intricate aggregate level phenomena by exploring lower level in-
teractions between agents in computer simulated environments. Once a set
of features is defined at the agent level, it becomes possible to observe how
the interactions between them, each acting individually, shape group-level
phenomena. Epstein (2006) points to three defining characteristics of the
method: 1) focus on the individual (agent); 2) its simplicity; and 3) its close
ties with experimental methods. When applied to Social Sciences, ABM
states that group-level regularities may be studied by looking at the local
level interactions of autonomous and heterogenous agents, a "bottom-up"
approach. The precise characteristics of the agent behavior depends greatly
on the researcher’s objective, and it may vary from simple one-job agents
in a static environment (Axelrod, 1995) to a complex society of agents
interacting in ever-changing situations (Epstein et al., 2000). In the Social
Sciences, however, ABM advises to model simple agents interacting first,
as it may point to the minimal requirements necessary to the emergence
of aggregate-level phenomena. Lastly, the proposers of ABM acknowledge
the close relationship between ABM and traditional experimental/empirical
methods, such that ABM may generate interesting and testable empirical
ideias (or may be used to expand and explore previous empirical findings
(e.g. Smaldino, 2019)). For a full introduction to ABM and its contributions
to Social Sciences, refer to Epstein and Axtell (1996).

Behavior Analysis of Norms and Metanorms evolution

Although Behavior Analysis has provided no detailed account of norms
and metanorms evolution, there seems to be a sizable overlap in interests
between behavior analytic researchers and those handling the issue from
different theoretical perspectives. In a seminal paper outlining the role of
verbal behavior in cultural practices, Glenn (1989) borrows concepts from
Harris” Cultural Materialism to emphasize different levels at which indivi-
dual behavior may be vital to cultural practices. At the infrastructural level,
verbal and non-verbal behaviors are directed at solving problems posed
by the immediate context. According to the “principle of infrastructural
determinism”, the survival of a culture depends on the efficiency and trans-
missibility of the behavioral relations maintained at the infrastructural
level. The structural level is where members in a group establish practices
to control the infrastructural design, and Glenn defines it as “comprised
of political and domestic practices that regulate relations among indivi-
duals in the system and that function to support infrastructural practices.
Structural practices include those having to do with domestic division
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of labor, socialization and education, discipline, and sanctions" (p. 12).
So the cultural structure could be thought of as a set of norms aimed at
controlling the efficiency of the infrastructural level, assigning merit or
blame to infrastructural performance, and, also, to establishing sanctions
to the enforcement of those consequences. Finally, the superstructural level
emerges from the enacting of the two previous levels and may be thought
as culture in itself, a product of intense negotiation between different in-
frastructural and structural demands met by the group.

In arecent development, Couto (2019) proposes a model of selection of
cultures that advances similar arguments. The author uses the concept of
Interlocking Behavioral Contingencies (IBCs) to describe the relations betwe-
en members of a group and their environment and states that within-group
behavior selection would be best conceptualized as selection of cultures,
as it involves different IBC’s competing for survival and reproduction. He
subsequently distinguishes between execution IBC (eIBC) and controlling
IBC (cIBC), so that the first involves social relations directly associated with
the production of group outcome (Aggregate Product, in metacontingen-
cy parlance) and the second involves social practices associated with the
control of these social relations, which, in turn, guarantee the production
of the group outcome and, thus are indirectly controlled by it. The eIBCs
closely resemble the Harris” infrastructural level, while the cIBCs seem to
relate to the structural level. Be it as it may, the cIBC’s and the structural
level both point to the norms and metanorms enforced by a group.

Considering an Elementary School as an example, the relations between
the administration, staff, teachers, and students comprise the infrastructure
or eIBCs, as they involve the production of the intended group outcome:
establishing a basic repertoire on the students. On top of that, there exists
a second set of relations that establish who should do what, when and
how, and, moreover, what to do when those actions are not performed.
These relations would encompass the structural level or cIBCs, and they
guarantee the proper functioning of this social system. Some of those rules
are enshrined in codes of conduct (civil law, constitution, code of ethics,
etc.) but a sizable portion is informally enforced: teachers will complain
if they see a colleague shirking, students may snitch on a colleague for
vandalizing school property, etc. These practices are not directly related to
the production of education (this system’s main goal), but they specify the
circumstances for the eIBCs to be most effective. And to fully comprehend
this group’s dynamics, one should investigate not only the executive social
practices, but their controlling social practices too, as one does not stand
apart from the other.

The main goal of the present paper is to introduce a game-theory infu-
sed understanding of norms and metanorms selection and evolution with
the use of computer simulated social interactions. It is the position of the
authors that this understanding is in line with the Skinnerian approach to
the evolution of cultural practices presented earlier and that this method
allows further theoretical and heuristic developments for researchers in the
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field. The paper will proceed first by outlining Axelrod’s Metanorms Model,
followed by a tutorial on its implementation with NetLogo programming
language. Finally, two experiments are carried out using this framework,
and the implications of the results, along with future direction of research,
are discussed from a Skinnerian perspective.

Method

Axelrod’s Metanorms Model

When a conceptual model is translated into an agent-based model the
first step is to identify the agents and its actions, and how these actions
affect each agent. In his model, Axelrod (1986) distinguished between three
sets of agents: an executor, called agent i, and two observers, agents j and
k. Each one has a role of actions: the executor (i) has to choose between
to defect or not, while the observers (each j # i) have to decide whether
to punish or not the defector, or other observer who did not punish the
defector (for each agent k # j and i). All roles are randomly assigned but,
once the executor is defined, the selected agent maintains his role during
the execution decision opportunities, while the other roles are randomly
assigned after each executor's or observer's decisions. These actions affect
the agent itself and other agents by producing certain payoffs (Table 1).
Every time a defection takes place, the defector gets a benefit payoff, and
if that defection is punished by an observer the defector gets a punishment
payoff, and the observer who enforced the norm pays an enforcement cost.
Also, this defection produces harm to everyone (but the defector) defined
by the hurt payoff.

Table 1
Original payoffs values of the Axelrod (1986) model.
Behavior Value
Defect benefit 3 for the defector
Hurt of defection -1 for all but the defector
Enforcement cost -2 for those who punish
Punishment -9 for the defector

The second step is to define the agents’ and environment variables
that will control the behaviors and interactions in the simulation. In the
Axelrod’s model the agents are instantiated with just two parameters, their
boldness and their vengefulness. The boldness parameter (Bi) determines the
probability of defecting, while vengefulness (Vi) determines the probability
of norm and metanorm enforcement (i.e. punishment of defections and
shirking). In the original model, these two parameters (also called the agent
strategy) are defined by a probability ranging from 07 to 77, randomly
selected and fixed until the end of a round. The defecting decision is mo-
derated by an exogenous parameter called S, defined by a random number



RBTCC 24 (2025) 6

drawn from an uniform distribution ranging from 0 to 1. S determines
the probability of a defection being seen by the group, and whenever S
< Bi, the agent i chooses to defect. S also determines the probability of a
given agent j observing a defection and an agent k observing a shirking.
Whenever an agent j or k detects a defection or shirking, respectively,
with the probability S, the decision to punish the defector or the shirker is
determined by their probability Vi,j.

A third step consists in defining the simulation procedures in a logical,
step by step, workflow. In the original Metanorms Model, a set of 20 agents
first must decide to cooperate or defect, each at its turn (N-Person Prisoner's
Dilemma Game). If s/he decides to cooperate (i.e. not defect) the procedure
continues and another agent is selected for defection. If s/he defects, then
surrounding agents have to 1) decide to punish or not the defector (Norms
game), and 2) decide to punish or not those who refrained from punishing
the defector (Metanorms game). After each action takes place the payoffs
are assigned to each agent. After every agent has four opportunities for
defection, an evolutionary selection process begins and a new generation
is created. The agents are ranked by their absolute earnings and divided
in three tiers: the agents with the best scores generate two offsprings with
identical parameters; the middle tier agents provide one offspring, while
the least scoring agents just die out. At the end of the process, there is a
mutation process added to the system by selecting at least one random
agent and changing their parameters with a fixed probability of 1%.

In this way, Axelrod’s ABM provides conditions to test theoretical pre-
dictions in a closed system that allows iterated interactions in a population
of agents behaving in accordance with a simple set of rules (Axelrod, 1986)
and has helped to elucidate the elusive dynamics of norm enforcement
observed in the empirical literature (see Horne, 2006). The parameters
presented in Table 1 may be interpreted as the agents’ contingencies of
reinforcement, where each action (response) produces a payoff (conse-
quence), while their boldness and vengefulness could be interpreted as their
probability of emitting defective and punishing responses. As discussed ear-
lier, we propose that the contingencies controlling the executor's behavior
are eIBCs, while the contingencies for norm and metanorm enforcement
comprise the cIBCs. The selection procedure, in the current interpretation,
is seen as a process of evolution of the agents’ behavior. Even though the
terms generation and offspring are used, they can be understood as rules to
update agents’ probabilities of emitting either response: defection or pu-
nishment. At the end of a number of interactions (i.e. a generation), agents
access which strategy was most successful and copy it. Mutation is added
to include noise (such as errors in establishing the winning strategy or in
implementing the best behavior) and variability (such as the appearance
of a new member in the group) to the agents’ behavior.
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NetLogo

NetLogo is a development environment for multi-agent simulation that
contains an extensive library of example models covering a wide variety of
knowledge areas. It is a freely available, open-source multiplatform softwa-
re with its own programming language (Chiacchio et al.,, 2014; WilensKky,
1999). Its name is derived from the educational programming language
Logo and it was designed for both teaching and research purposes, in
special, for students or researchers without a programming background.

[t provides a virtual environment in the form of a grid, called world, in
which different types of agents can interact with each other. In NetLogo
there are four types of agents: patches, turtles, links and the observer.
Each one has a function and a set of features. Patches are fixed pieces of
“ground” that make the world. Turtles can move through patches in any
distance/direction at every step of time, and can assume different shapes
and sizes. Links have the function of connecting at least two turtles, and are
represented by lines. The observer is the overseeing agent that gives other
agents instructions and makes changes in the world. It also owns a set of
global variables that define general parameters of the model that can be
accessed by the other agents. Also, each turtle, patch and links have their
own set of variables and their own initial conditions, being able to inherit
or transmit these properties, which offers the possibility of combining
environmental, social and biological (evolutive) dynamics in a single model.

The passage of time is operationalized as discrete steps called ticks, in
which all agents can behave (one at a time), reducing significantly the lines
of code, once at every tick all agents can be asked, for example, to move
using only one line of code. NetLogo also offers an interface where the si-
mulation can be controlled, variables can be manipulated and graphs with
simulated data can be plotted. In this interface it is possible to observe the
ticks count, the world and the agents behaving, as well as to control the flow
of the simulation and variables values through buttons, switchers, sliders
and other user interaction elements. As an alternative to this interactive
type of simulation, NetLogo offers a built-in tool called BehaviorSpace that
allows the user to perform simulation experiments with a large parameter
space to test different model assumptions and generate simulated data for
further analysis, using a multi-core parallel computation paradigm.

Results

The NetLogo model

In our implementation of the Axelrod’s Metanorms Model we used only
three agents: turtles, patches and the observer. From these, only turtles and
the observer had function in the simulation. The turtles were the agents
who behaved accordingly to the set of actions defined in the original model
(described earlier), and the observer was the agent handling all instructions
from the code to the turtles, as by default in any NetLogo simulation. The
world consisted of a 16x16 grid made of patches where the turtles stood
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on, and at every tick one turtle had four opportunities for defect, as well as
other turtles had the opportunity to punish the defector or punish a shirker.
The main global variables were the number of agents, the S parameter
and the payoffs values. The S parameter was implemented by the seen?
variable defined by a random number ranging from 0 to 1. The number of
agents and the payoffs were set up to the Axelrod’s model default values,
but we also implemented sliders to manipulate these values. Finally, as by
NetLogo default, we added Setup and some Go buttons to initialize and
control simulation flow, respectively.

Definition of turtle-own variables

In the NetLogo context, an agent has its own variables which define
their form, color, position and other properties. Some agent variables like
form, color, position and movement are built-in variables that can be ma-
nipulated, but others are custom. Most of the custom variables control the
agent's actions, and for the case of Axelrod’s model implementation, they
controlled the decision of the agents. As in the Axelrod’s model, agents have
to decide whether or not to defect, so it is necessary that each agent has a
variable that defines its tendency to defect (boldness). Similarly, an agent
must have a variable that defines its tendency to punish (vengefulness),
and finally, a variable that stores the payoffs produced after each decision
(score). Figure 1 represents the initial condition in which the agents and
their variables are created. Different from the original model, the boldness
and vengefulness variables are initialized with random numbers from the
interval [0,1]. The variable score is initialized as zero.

boldness
vengefulness

.
o —
] beed

Lo L}
NN
] beeed

Figure 1. Definition of the agent variables. Each agent has two main va-
riables, boldness or its tendency to defect, and vengefulness or its tendency
to punish.
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Simulation procedures
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Figure 2. Algorithm structure of the Norms and Metanorms game. S repre-
sents the global variable seen?, letters i, j and k represent different agent
sets and roles. Person-like shapes graphically represent agents and adjacent
numbers represent their scores.

The simulation algorithm is depicted in Figure 2. Once the environment
has been initialized (time 0), an agent i is randomly selected to choose
whether or not to defect by comparing its boldness (Bi) versus a generated
random number S (seen? variable represented by a flipped coin). If its
boldness is greater than S, then the agent defects, otherwise it does not
defect. Once an agent defects, the hurt payoff (-1) is assigned for each other
agent and the defection benefit payoff (3) is assigned to the defector. After
that, the Norms game starts with another agent (j) randomly selected to
choose whether or not to punish the defector. First is evaluated if agent j
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saw agent i defecting with the probability S. If j observes i, j has to decide
whether or not to punish i with the probability Vi. If j decides to punish
I, the enforcement cost and punishment payoffs are calculated for j and i,
respectively. Finally, when an agent ignores a defection the Metanorms
game starts by randomly selecting another agent (k) to choose whether
or not to punish who ignored the defection, and a similar procedure to
the Norm game occurs. A run stops when all agents had the opportunity
to defect four times, after that, the total scores are computed and the best
agents will have the opportunity to transmit their own variable values to
offspring, following a genetic algorithm process.

The genetic algorithm is an evolutionary dynamic procedure in which
the best agents (in terms of their scores) will be selected to compose the
next generation, including not only the selection of who has the oppor-
tunity to transmit their “genetic” information but also the way in which
this information will be passed to the offspring (reproduction). Axelrod
proposed that it could be interpretated as an asexual reproduction, because
the agents generate offspring with identical parameters, but the process
of transmiting “genetic” information could be improved if, in addition to
asexual reproduction, procedures which emulate sexual reproduction were
included. These procedures are called crossover reproduction, and they
consist of mixing the parameters of the two agents to generate an offspring.

Here the two types of reproduction were implemented, along with
mutation, and a new generation was composed of a set of the best agents
which remain after the generation, a set of agents created by the crossover
of the best, and a group of totally new agents. The process of mutation is
done by randomly selecting an agent (with a probability of 0.01) of the
new generation and changing one of their parameters. In our case, the
best five agents remain in the population, and their values of boldness
and vengefulness are mixed to create new agents following the crossover
procedure. For this, two agents of the best five are randomly selected to
produce two new agents, one of them will have the boldness of the first
selected agent and the vengefulness of the other, and so on. After that, the
new generation will be formed by the best five agents of the last generation,
ten agents from the crossover, and five completely new agents.

Two experiments were performed through the BehaviorSpace tool. The
first one aimed to replicate the results of Axelrod (1986) which evaluated
the effects of a metanorms procedure on the establishment of norms. The
second one evaluated the effects of changes in the enforcement cost and in
the S parameters over total defections. All agents and variables were set
up by the original model defaults, except when cost was manipulated in
Experiment 2. The experiments were carried out in NetLogo version 6.1.1.
For those interested, the source code of the model implementation is avai-
lable on GitHub at the following address: https://github.com/julian-tejada/
Meta-norms_game/.
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Model implementation and experiment results

The interface of the NetLogo Metanorms Model implementation is
presented in Figure 3 where the different elements for controlling the
model parameters are specified. The Go button runs the simulation for only
one agent, the go20 for one generation of agents, and the go*100, runs 100
generations of agents. By all the other elements (the switcher and sliders)
it is possible to change the number of agents and generation duration, as
well as the values of the defect benefit, hurt of defection, enforcement cost
and punishment. Also, different charts were set up to follow the dynamics
of agent’s behaviors across the simulations.

Boldness and Vengefulness
M soldness
M vengefulness:

Boldness and Vengefulness

Figure 3. Screenshot of the NetLogo implementation of the Norms and
Metanorms game. In A, the NetLogo interface with the elements that control
the simulation runs: 1. Control buttons to set up and run the simulation; 2.
Switcher to turn Metanorms game on or off; 3. Slider to define the number
of agents and the number of agents decisions which conform a genera-
tion; 5. Slider to define the value of the seen? variable; 6. World in which
the environment and agents are instantiated; 7. Chart of the evolution of
boldness and vengefulness variables across the generations; 8. Chart of the
number of defections by generation; 9. Chart of scores by generation; and
10. Scatter plot of boldness versus vengefulness across generations. In B,
the NetLogo Interface after 100 generations of the Norms game.
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Regarding the first experiment, the NetLogo implementation of the
Metanorms Model reproduced the original model (Axelrod, 1986) results
and the results of other replications (Matthews, 2016; Prietula & Conway,
2009), by showing similar patterns for both boldness and vengefulness in
the Norms and Metanorms games. After 100 generations run, the average
boldness values were higher than vengefulness values in the Norms game
(see Fig. 4A and Fig. 4B), while in the Metanorms game these patterns
were reversed (Fig. 4C and Fig. 4D). The same pattern was observed for the
number of defections (see Fig. 5), indicating that metanorm enforcement
suppresses defections by significantly reducing average boldness in the
population over repeated iterations. This effect is more prominent after
long simulation runs. Results from 1000 generations run exhibits a similar
pattern found by Prietula and Conway (2009) evidencing a reduction in
the average of boldness and a high increase in the average of vengefulness
in the Metanorms game (see Fig 6).

A Norms B Norms
0.75- 0.75
0.50- 0.50
- - - -
0.00- . . . . 0.00
0 25 50 75 100 Boldness Vengefulness
Gerations
c Meta-norms D Meta-norms
0.75. M{/\W\/\[\ 075
0.50-
0.5 0.50
0.00- f i i f 0.25
0 25 50 75 100 -
Gerations 0.00
Boldness Vengefulness
Groups — Boldness — Vengefulness

Figure 4. Evolution of boldness and vengefulness values across 100 gene-
rations for the norm (A) and metanorm (C) games. Average boldness and
vengefulness values after 100 generations of the Norms (B) and Metanorms
(D) games.
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Conditions — Norms — Meta-norms
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0 25 5'0. 75 100 Meta-norms Norms
Figure 5. (A) Evolution of the number of defections across 100 generations
of the Norms and Metanorms games. (B) Average number of defections

across 100 generations of the Norms and Metanorms games.

Conditions ® Norms e Meta-norms

1.00-

0.75-

Vengefulness
o
@
<

0.25-

0.00- . l ! . ! .
0.1 0.2 0.3 0.4 0.5 0.6

Boldness
Figure 6. Average strategy values for Norms and Metanorms games after

1000 generations.

Regarding the second experiment, the enforcement cost parameter
varied from 0 to 9 and observed its effect on the average number of defec-
tions after 100 generations for each of the cost values (Figure 7). Increasing
the costs of cIBCs over the value of 5 leads to a complete breakdown of
cooperation, ceteris paribus. The effects on norms, however, are much less
drastic, with desertion rate stabilizing over the value of 3. This suggests
that Metanorms are much more sensible to their cost of enforcement than
Norms.
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20-
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Cost
Figure 7. Average number of defections for 100 generations in which the
values of enforcement cost were changed from 0 up to 9. The shadow re-

presents standard error.

The other parameter variation was on the range of values of the seen?
variable (S in Figure 2). Values varied from 0.25 to 5, and observed its effects
over the average number of defections after 100 generations run for each
value (Figure 8). Higher values indicate that the transgressions are more
visible, hence, they have higher lower probability of being emitted (only
agents with high values of boldness will defect) and higher probability of
being punished (more surrounding agents will observe the transgressions).
Our results indicate that metanorms are most needed for seldom seen
transgressions, where they maintain Defections at clearly lower levels
than with norms alone. The easier to observe the transgression, the less
practical relevance a metanorm has.

Game Meta-norms Norms

50-

Defections
w a
o o

N
o
|

10-

o1-

0.25 05 0.75 1 2 3 4
Seen
Figure 8. Average number of defections for 100 generations in which the

values of S parameter were changed from 0.25 up to 5. The shadow re-
presents standard error.
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Discussion

Our goals in this paper were to develop a NetLogo implementation of
the Norms and Metanorms game (Axelrod 1986) and to propose an inter-
pretation from a Skinnerian perspective of cultural evolution, as indicated
in the Introduction. The discussion will be divided in three parts. First, the
technical details of the model will be discussed. Then, the uses and benefits
of model building for Behavior Analysis is briefly considered, before the
parallels between the present model and the Skinnerian account on the
evolution of cultural practices is examined closely.

Due to the lack of formal clarification in the original model (Axelrod,
1986), the present implementation required adjustments in some arbitrary
assumptions and procedures of the model. The main alterations were car-
ried out in the range of values that the boldness and vengefulness variables
could assume, and in the evolutionary procedure by updating the genetic
algorithm, to include, besides mutation, a crossover reproduction. This
made possible amplify the parameter space of the main agent variables
and allowed parameter mixing in the new generations, giving the model
more granularity and stability. Despite that, the new model fits well with
the previous results of other replications (Prietula & Conway, 2009), presen-
ting similar dynamics on the vengefulness and boldness variables, as well
as the number of defections for the Norms and Metanorms games. As the
model source code is available on a GitHub repository, it is possible other
researchers interested in this kind of implementation reproduce the main
findings and make further extensions of the model. The available version
permits a flexible configuration of different parameters and observation
of their effects over the agents behavior.

Regarding the interpretation of the model, in the introduction of his
book aptly called “Generative Social Science: studies in agent-based compu-
tational modelling”, Epstein (2006) states that to understand the emergence
of macroscopic societal regularities, one must answer the question: “How
could the decentralized local interactions of heterogeneous autonomous
agents generate the given regularity?” (Epstein, 2006, p. 5)

In the model herein presented, the question could be restated as follows:

“How could a decentralized group of heterogeneous agents interact with
the environment and with themselves to generate either norm compliance
or norm defiance, a group regularity?”

This question can be addressed by different types of scientifically sound
answers, and it is indeed the case. Psychology and Social Sciences in general,
Behavior Analysis included, have traditionally answered this question by
creating verbal theories, verbal descriptions of events, concepts and their
entanglement (Smaldino, 2020). Despite the mastery in writing skills by
some of Psychology's most prominent writers, ordinary language has limi-
tations as to its vagueness and ambiguity. Even when a precise scientific
language is adopted, most verbal accounts make it difficult to understand
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the premises and fine details of their predictions (Gilbert & Terna, 2000). In
the context of Evolutionary Biology, Servedio et. Al. (2014) state that verbal
models in his field lack the clarity and precision needed to account for the
complexity of the phenomenon. The authors champion the use of models, in
their case mathematical models, as a way of carrying out “Proof-of-Concept
Models”, models inspired by verbal theories but with explicit assumptions.
In this way, these models can be used to judge the appropriateness of verbal
theories, precisely describing results of the events and relationships they
propose.

Consider this excerpt of verbal theory: “men act upon the world, and
change it, and are changed in turn by the consequences of their action.”
(Skinner, 1957). It is the opening line of Skinner's most important work and
it puts forth the basic tenet of Radical Behaviorism: behavior is the result
of ongoing interactions of an organism with its environment. As enlighte-
ning and insightful an idea as it is, a verbal formulation of such complex
phenomenon is bound to be incomplete, leaving the intricate details of
the continuous dynamics untouched (Resnick, 1994). According to Ostrom
(1988), there are two more “symbol systems" available to the social scientist:
mathematical models and computational models. Mathematical models are
well established in the Skinnerian community (e.g., Baum'’s Generalized
Matching Law, 1974) and their goal is precisely to establish the relevant
elements in a situation, as well as the nature of their relationships, and
then to observe their interaction to establish a benchmark against which
empirical data is compared to. Computational models, on the other hand,
are extremely rare. McDowell and colleagues have developed an intriguing
and fruitful research project simulating behavior selection in a computer
environment (McDowell, 2013, 2017, McDowell & Klapes, 2019). Their im-
plementations have to make explicit the implicit assumptions adopted by
verbal theories and in the process they are able to not only specify these
parameters, but also show how the parameters interact when the programs
run, and to determine the limits of the model, such as how much variation
is needed for a selection-by-reinforcement to be adaptive (McDowell, 2017).
Agent-based modeling has the same benefits, and an additional one of doing
away with most algebraic skills necessary for mathematical model building.

In a series of papers discussing the role of models in Science and Behavior
Analysis, Marr (1992, 1993, 1996, 2009) advocates a Dynamic Systems appro-
ach to behavioral studies, with a clear focus on descriptions of behavior
change and the conditions bringing about that change. Dynamic Systems,
such as social practices, are particularly difficult to be verbally described
because they engender different levels of organization (individual, group
and structural/ situational); different ways in which these levels interact;
and these systems have memory, that is, past events determine the state of a
system on any given time. All three challenges are accommodated by Agent
Based Modelling, such as the one presented here (Smaldino, Calanchini e
Pickett, 2015). In the present model, individual behavioral propensities are
formally defined, the interactions between agents are established and the
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structure of their environment is clearly determined. At the beginning of
a run, it is impossible to predict exactly when and how the behavior of the
population will tend to norm conformance just looking at one agent or even
at the agents mean propensities, without considering their environment
and how they interact.

In our model, with the right parameters we can observe the emergen-
ce of norm compliance in a scenario where agents are following simple
specified rules for their action. The concept of emergence has received a
lot of attention by researchers interested in the study of cultural evolution.
Although it is beyond the scope of this paper to present a full account of
the debate (see Krispin, 2006, for a critical position), suffice it to say that the
emergent property of the system is fully accounted for by the specifications
of the model. Nothing else needs to be added. The emergent property of
our model is simply “arising from the local interaction of agents” (Epstein
& Axtell, 1996, p. 35). In behavior analytic terms, the norm compliance
pattern observed in our model is the product of eIBCs together with cIBCs,
and changing any parameter of each contingency, may have dramatic effects
on the probability of compliance emergence: as shown in Figure 8, once
the cost of sanctioning exceeds 5, the rate of defections sharply increases.

It is important to underscore that notwithstanding our model being
able to generate a macro level phenomenon, it does not make its basic as-
sumptions necessarily true. ABM can provide just sufficient explanations, not
necessary ones. In fact, any complex phenomenon composed of interplay
between levels may be implemented in different ways on lower levels (a
property called multi-realizability, Sawyer, 2005). Epstein (2014) calls such
models candidate models, and specifies that an empirical research agenda
must be conducted “figuring out which of the microspecifications is most
tenable empirically. In the context of social science, this may dictate that
competing micro specifications with equal generative power be adjudicated
experimentally—perhaps in the psychology lab” (p. 43, emphasis added).

Conclusion

This brings us to our final comment: the complementary relationship
between ABM and empirical research. Natural sciences and engineering
have adopted computer simulations as methods for a long time (Zeigler,
1976) focusing on prediction, such as predicting the position of a space sta-
tion based on simulations of its trajectory. On Social Sciences, however, the
principal value of simulations seems to be on theory development (Gilbert
& Terna, 2000). As mentioned above, proof-of-concept models may elucidate
the adequacy of a proposed theory, while simple models like the one here
presented may shed light on relevant parameters for a phenomenon of
interest to occur. The complexity of a model is closely linked to available
knowledge in a field, and when entering an area full of controversy and
conflicting results, as is the case of evolution of cultural practices, it is ad-
visable to start with a simple model.
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