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Este trabajo tiene por objetivo llenar el vacío entre el análisis conductual de la cultura y 
recientes abordajes computacionales usadas en el estudio de las dinámicas sociales. Primero 
introduciremos una perspectiva, inspirada en la teoría de los juegos, de como normas y 
metanormas evolucionan y como los modelos basados en agentes son usados para simular 
y analizar la emergencia de fenómenos normativos. A continuación, postulamos que este 
método está en concordancia con el abordaje analítico comportamental de la evolución de 
la cultura, ofreciendo un marco común para posteriores desarrollos teóricos y heurísticos 
de investigadores en el área. Posteriormente, se procede a presentar el modelo de Normas y 
Metanormas de Axelrod, seguido de un tutorial sobre su implementación usando el lenguaje 
de programación NetLogo. Finalmente, dos experimentos son conducidos usando este marco 
teórico, y las implicaciones de sus resultados, así como orientaciones para futuras investiga-
ciones, son discutidas desde una perspectiva skinneriana.

Palabras clave: modelos basados en agentes, normas, metanormas, simulación social, 
análisis del comportamiento.

Resumen

This work aims to fill in the gap between cultural behavior analysis and recent computational 
approaches to the study of social dynamics. We first introduce a game-theory infused unders-
tanding of norms and metanorms evolution and how agent-based models are used to simulate 
and analyze the emergency of normative phenomena. Then we argue that this method is 
in line with the cultural behavior analysis approach to the evolution of culture, offering a 
common framework for further theoretical and heuristic developments for researchers in 
the field. We proceed by outlining Axelrod´s Metanorms Model, followed by a tutorial on its 
implementation with NetLogo programming language. Finally, two experiments are carried 
out using this framework, and the implications of the results, along with future direction of 
research, are discussed from a Skinnerian perspective.
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Abstract

O presente trabalho se propõe a preencher a lacuna entre a análise comportamental da 
cultura e recentes abordagens computacionais no estudo da dinâmica social. Inicialmente será 
introduzida uma perspectiva inspirada na teoria dos jogos de como normas e metanormas 
evoluem e como modelos baseados em agentes são usados para simular e analisar a emer-
gência de fenômenos normativos. Em seguida, argumenta-se que este método está alinhado 
com a abordagem analítico comportamental sobre a evolução da cultura, oferecendo um 
enquadramento compartilhado para futuros desenvolvimentos teóricos e heurísticos para 
pesquisadores na área. O texto prossegue apresentando o Modelo de Metanormas de Axelrod, 
seguido por um tutorial sobre sua implementação usando a linguagem de programação 
NetLogo. Finalmente dois experimentos são conduzidos utilizando este enquadramento e 
as implicações destes resultados, bem como futuras direções para pesquisa, são discutidas a 
partir de uma perspectiva skinneriana.

Palavras-chave: modelo baseado em agentes, normas, metanormas, simulação social, 
análise do comportamento.
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Societies are able to prosper, in part, because individuals are often willing 
to help others even when it incurs costs for themselves (Rand & Nowak, 
2013). The existence of prosocial behavior challenges the basic game-the-
oretic assumption that humans are narrowly concerned with self-interest 
(Binmore, 1998). Prosocial behavior may be supported, in part, through 
third-party sanctioning, acts of approval or condemnation provided by an 
uninterested audience. When a transgression occurs, sanctioning behavior 
is more effective when it is administered by a third-party, as the victims of 
violations often lack the resources to retaliate or are incapacitated by the 
norm violation (Fehr & Fischbacher, 2004). To demonstrate the pervasiveness 
of third-party sanctioning, Fehr and Fischbacher (2004) allowed participants 
to act on the result of a Dictator Game by spending their own resources 
to decrease the dictators’ earnings. Indeed, many participants opted to 
punish selfish dictators. Similar results have been observed using different 
procedures and various types of social dilemmas (Fehr & Gächter, 2002; 
Henrich et al., 2006).

Examples of sanctioning behavior raise the question of why third-parties 
sacrifice resources to influence the outcomes of other parties. Sanctioning 
may induce prosocial behavior, but what motivates third-parties to engage 
in costly acts of sanctioning, be it rewards or punishments? Sanctions can be 
interpreted as a second-level public good (Yamagishi, 1986) because they be-
nefit the collective interest by encouraging prosociality, a group level benefit, 
while bearing a cost to the individual sanctioners (Horne, 2007). Some have 
noted the danger of infinite regress in this reasoning (e.g. Kiyonari & Barclay, 
2008), as any prosocial behavior would require a higher-level explanation, 
making even the most trivial altruism act theoretically intractable (but see 
Horne, 2008; Sober  et al., 1999 for opposing arguments).
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Building on this understanding, Horne and Mollborn (2020) proposed 
a Relational Theory of Norm Enforcement, in which the social relations 
between members of a group play a fundamental role. Instead of exclu-
sively focusing on personal benefits and costs of her behavior, a group 
member also cares about maintaining her social relations. Most of the 
tasks performed by adults in modern society presuppose the presence 
or help of others, and, in this way, maintaining an active and favorable 
social network is of the most importance (Guerin, 2003). Apart from the 
direct benefits of their behavior, members of a group have a collective 
interest in controlling each other´s behaviors, rewarding good deeds and 
punishing wrongdoings. In this way, the sanctioning of metanorms (i.e. 
a second order norm enforcement) may be supported by mechanisms of 
costly signaling (Hardy & van Vugt, 2006), in which the sanctioner acts 
to broadcast a favorable reputation for future interactions. Any costs of 
the metanorm sanctions will be canceled out by the increased quality of 
future interactions.

One important aspect of this model is that there are at least two patterns 
of behavior happening in the group: one in which the agents have to decide 
to contribute or not to a public good or a n-players prisoner dilemma, and 
another where the agents choose whether to sanction the non-cooperators. 
While the former may be related to the executive decisions agents face 
(decisions that impact how much resources they will have), the latter is 
related to how the resources should be generated (norms), and how to 
what to do with those who do not apply the norm (metanorms). Axelrod 
(1986) synthetized this dilemma in a model in which the costs of third-party 
sanctions are collectively borne by participants in the group. The enforce-
ment of norms on how to conform to norms (metanorm) may bring about 
the necessary conditions for the maintenance of social norm and, being 
the norm beneficial to the average group payoff, the metanorm enforcers 
would be selected for. 

The author describes a game in which norms, over certain circums-
tances, can evolve and even settle down in a community (Axelrod, 1986). 
His model considers a set of few variables which control the costs and 
benefits that an individual would obtain if she defected, in an environ-
ment in which it is possible that someone else observed her defection, 
and decided to punish. In the game, the norms were represented as the 
mutual agreement not to defect, and when an individual decides to break 
them, he or she could be punished. The model also incorporates a cost 
that the observer must pay to punish the transgressor, as well as a hurt 
that infringes on the other group members each time a member decides 
to defect. The relationship between the gain, the punishment and the hurt 
values defines the establishment of the norm. The model also includes a 
second level of norm enforcement, metanorm, in which a second player 
has to decide if to punish those who did not punish the defector, and as in 
the norm enforcement, the metanorm enforcement has defined cost and 
hurt values.
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The analysis advanced by the author differs in method from the pre-
vious works presented. Whereas traditional research on the topic by psy-
chologists and economists focus on verbal theoretical advancement closely 
tied with empirical laboratory experiments (Smaldino, 2020), Axelrod´s 
work borrows the Agent Based Modelling (ABM) method from the emerging 
field of Computational Social Science (Epstein, 2006). Presenting itself as a 
third complementary way of building theory (Ostrom, 1988), ABM aims at 
explaining intricate aggregate level phenomena by exploring lower level in-
teractions between agents in computer simulated environments. Once a set 
of features is defined at the agent level, it becomes possible to observe how 
the interactions between them, each acting individually, shape group-level 
phenomena. Epstein (2006) points to three defining characteristics of the 
method: 1) focus on the individual (agent); 2) its simplicity; and 3) its close 
ties with experimental methods. When applied to Social Sciences, ABM 
states that group-level regularities may be studied by looking at the local 
level interactions of autonomous and heterogenous agents, a "bottom-up" 
approach. The precise characteristics of the agent behavior depends greatly 
on the researcher´s objective, and it may vary from simple one-job agents 
in a static environment (Axelrod, 1995) to a complex society of agents 
interacting in ever-changing situations (Epstein  et al., 2000). In the Social 
Sciences, however, ABM advises to model simple agents interacting first, 
as it may point to the minimal requirements necessary to the emergence 
of aggregate-level phenomena. Lastly, the proposers of ABM acknowledge 
the close relationship between ABM and traditional experimental/empirical 
methods, such that ABM may generate interesting and testable empirical 
ideias (or may be used to expand and explore previous empirical findings 
(e.g. Smaldino, 2019)). For a full introduction to ABM and its contributions 
to Social Sciences, refer to Epstein and Axtell (1996). 

Behavior Analysis of Norms and Metanorms evolution
Although Behavior Analysis has provided no detailed account of norms 

and metanorms evolution, there seems to be a sizable overlap in interests 
between behavior analytic researchers and those handling the issue from 
different theoretical perspectives. In a seminal paper outlining the role of 
verbal behavior in cultural practices, Glenn (1989) borrows concepts from 
Harris´ Cultural Materialism to emphasize different levels at which indivi-
dual behavior may be vital to cultural practices. At the infrastructural level, 
verbal and non-verbal behaviors are directed at solving problems posed 
by the immediate context. According to the “principle of infrastructural 
determinism”, the survival of a culture depends on the efficiency and trans-
missibility of the behavioral relations maintained at the infrastructural 
level. The structural level is where members in a group establish practices 
to control the infrastructural design, and Glenn defines it as “comprised 
of political and domestic practices that regulate relations among indivi-
duals in the system and that function to support infrastructural practices. 
Structural practices include those having to do with domestic division 
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of labor, socialization and education, discipline, and sanctions'' (p. 12). 
So the cultural structure could be thought of as a set of norms aimed at 
controlling the efficiency of the infrastructural level, assigning merit or 
blame to infrastructural performance, and, also, to establishing sanctions 
to the enforcement of those consequences. Finally, the superstructural level 
emerges from the enacting of the two previous levels and may be thought 
as culture in itself, a product of intense negotiation between different in-
frastructural and structural demands met by the group.

In a recent development, Couto (2019) proposes a model of selection of 
cultures that advances similar arguments. The author uses the concept of 
Interlocking Behavioral Contingencies (IBCs) to describe the relations betwe-
en members of a group and their environment and states that within-group 
behavior selection would be best conceptualized as selection of cultures, 
as it involves different IBC’s competing for survival and reproduction. He 
subsequently distinguishes between execution IBC (eIBC) and controlling 
IBC (cIBC), so that the first involves social relations directly associated with 
the production of group outcome (Aggregate Product, in metacontingen-
cy parlance) and the second involves social practices associated with the 
control of these social relations, which, in turn, guarantee the production 
of the group outcome and, thus are indirectly controlled by it. The eIBCs 
closely resemble the Harris´ infrastructural level, while the cIBCs seem to 
relate to the structural level. Be it as it may, the cIBC’s and the structural 
level both point to the norms and metanorms enforced by a group.

Considering an Elementary School as an example, the relations between 
the administration, staff, teachers, and students comprise the infrastructure 
or eIBCs, as they involve the production of the intended group outcome: 
establishing a basic repertoire on the students. On top of that, there exists 
a second set of relations that establish who should do what, when and 
how, and, moreover, what to do when those actions are not performed. 
These relations would encompass the structural level or cIBCs, and they 
guarantee the proper functioning of this social system. Some of those rules 
are enshrined in codes of conduct (civil law, constitution, code of ethics, 
etc.) but a sizable portion is informally enforced: teachers will complain 
if they see a colleague shirking, students may snitch on a colleague for 
vandalizing school property, etc. These practices are not directly related to 
the production of education (this system´s main goal), but they specify the 
circumstances for the eIBCs to be most effective. And to fully comprehend 
this group´s dynamics, one should investigate not only the executive social 
practices, but their controlling social practices too, as one does not stand 
apart from the other.

The main goal of the present paper is to introduce a game-theory infu-
sed understanding of norms and metanorms selection and evolution with 
the use of computer simulated social interactions. It is the position of the 
authors that this understanding is in line with the Skinnerian approach to 
the evolution of cultural practices presented earlier and that this method 
allows further theoretical and heuristic developments for researchers in the 
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field. The paper will proceed first by outlining Axelrod´s Metanorms Model, 
followed by a tutorial on its implementation with NetLogo programming 
language. Finally, two experiments are carried out using this framework, 
and the implications of the results, along with future direction of research, 
are discussed from a Skinnerian perspective.

Method

Axelrod’s Metanorms Model
When a conceptual model is translated into an agent-based model the 

first step is to identify the agents and its actions, and how these actions 
affect each agent. In his model, Axelrod (1986) distinguished between three 
sets of agents: an executor, called agent i, and two observers, agents j and 
k. Each one has a role of actions: the executor (i) has to choose between 
to defect or not, while the observers (each j ≠ i) have to decide whether 
to punish or not the defector, or other observer who did not punish the 
defector (for each agent k ≠ j and i). All roles are randomly assigned but, 
once the executor is defined, the selected agent maintains his role during 
the execution decision opportunities, while the other roles are randomly 
assigned after each executor's or observer's decisions. These actions affect 
the agent itself and other agents by producing certain payoffs (Table 1). 
Every time a defection takes place, the defector gets a benefit payoff, and 
if that defection is punished by an observer the defector gets a punishment 
payoff, and the observer who enforced the norm pays an enforcement cost. 
Also, this defection produces harm to everyone (but the defector) defined 
by the hurt payoff.

Table 1 
Original payoffs values of the Axelrod (1986) model.

Behavior Value

Defect benefit 3 for the defector
Hurt of defection -1 for all but the defector
Enforcement cost -2 for those who punish

Punishment -9 for the defector

The second step is to define the agents’ and environment variables 
that will control the behaviors and interactions in the simulation. In the 
Axelrod’s model the agents are instantiated with just two parameters, their 
boldness and their vengefulness. The boldness parameter (Bi) determines the 
probability of defecting, while vengefulness (Vi) determines the probability 
of norm and metanorm enforcement (i.e. punishment of defections and 
shirking). In the original model, these two parameters (also called the agent 
strategy) are defined by a probability ranging from 07 to 77, randomly 
selected and fixed until the end of a round. The defecting decision is mo-
derated by an exogenous parameter called S, defined by a random number 
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drawn from an uniform distribution ranging from 0 to 1. S determines 
the probability of a defection being seen by the group, and whenever S 
< Bi, the agent i chooses to defect. S also determines the probability of a 
given agent j observing a defection and an agent k observing a shirking. 
Whenever an agent j or k detects a defection or shirking, respectively, 
with the probability S, the decision to punish the defector or the shirker is 
determined by their probability Vi,j.

A third step consists in defining the simulation procedures in a logical, 
step by step, workflow. In the original Metanorms Model, a set of 20 agents 
first must decide to cooperate or defect, each at its turn (N-Person Prisoner's 
Dilemma Game). If s/he decides to cooperate (i.e. not defect) the procedure 
continues and another agent is selected for defection. If s/he defects, then 
surrounding agents have to 1) decide to punish or not the defector (Norms 
game), and 2) decide to punish or not those who refrained from punishing 
the defector (Metanorms game). After each action takes place the payoffs 
are assigned to each agent. After every agent has four opportunities for 
defection, an evolutionary selection process begins and a new generation 
is created. The agents are ranked by their absolute earnings and divided 
in three tiers: the agents with the best scores generate two offsprings with 
identical parameters; the middle tier agents provide one offspring, while 
the least scoring agents just die out. At the end of the process, there is a 
mutation process added to the system by selecting at least one random 
agent and changing their parameters with a fixed probability of 1%.

In this way, Axelrod´s ABM provides conditions to test theoretical pre-
dictions in a closed system that allows iterated interactions in a population 
of agents behaving in accordance with a simple set of rules (Axelrod, 1986) 
and has helped to elucidate the elusive dynamics of norm enforcement 
observed in the empirical literature (see Horne, 2006). The parameters 
presented in Table 1 may be interpreted as the agents’ contingencies of 
reinforcement, where each action (response) produces a payoff (conse-
quence), while their boldness and vengefulness could be interpreted as their 
probability of emitting defective and punishing responses. As discussed ear-
lier, we propose that the contingencies controlling the executor's behavior 
are eIBCs, while the contingencies for norm and metanorm enforcement 
comprise the cIBCs. The selection procedure, in the current interpretation, 
is seen as a process of evolution of the agents’ behavior. Even though the 
terms generation and offspring are used, they can be understood as rules to 
update agents’ probabilities of emitting either response: defection or pu-
nishment. At the end of a number of interactions (i.e. a generation), agents 
access which strategy was most successful and copy it. Mutation is added 
to include noise (such as errors in establishing the winning strategy or in 
implementing the best behavior) and variability (such as the appearance 
of a new member in the group) to the agents’ behavior.
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NetLogo
NetLogo is a development environment for multi-agent simulation that 

contains an extensive library of example models covering a wide variety of 
knowledge areas. It is a freely available, open-source multiplatform softwa-
re with its own programming language (Chiacchio  et al., 2014; Wilensky, 
1999). Its name is derived from the educational programming language 
Logo and it was designed for both teaching and research purposes, in 
special, for students or researchers without a programming background.

It provides a virtual environment in the form of a grid, called world, in 
which different types of agents can interact with each other. In NetLogo 
there are four types of agents: patches, turtles, links and the observer. 
Each one has a function and a set of features. Patches are fixed pieces of 
“ground” that make the world. Turtles can move through patches in any 
distance/direction at every step of time, and can assume different shapes 
and sizes. Links have the function of connecting at least two turtles, and are 
represented by lines. The observer is the overseeing agent that gives other 
agents instructions and makes changes in the world. It also owns a set of 
global variables that define general parameters of the model that can be 
accessed by the other agents. Also, each turtle, patch and links have their 
own set of variables and their own initial conditions, being able to inherit 
or transmit these properties, which offers the possibility of combining 
environmental, social and biological (evolutive) dynamics in a single model.

The passage of time is operationalized as discrete steps called ticks, in 
which all agents can behave (one at a time), reducing significantly the lines 
of code, once at every tick all agents can be asked, for example, to move 
using only one line of code. NetLogo also offers an interface where the si-
mulation can be controlled, variables can be manipulated and graphs with 
simulated data can be plotted. In this interface it is possible to observe the 
ticks count, the world and the agents behaving, as well as to control the flow 
of the simulation and variables values through buttons, switchers, sliders 
and other user interaction elements. As an alternative to this interactive 
type of simulation, NetLogo offers a built-in tool called BehaviorSpace that 
allows the user to perform simulation experiments with a large parameter 
space to test different model assumptions and generate simulated data for 
further analysis, using a multi-core parallel computation paradigm.

Results

The NetLogo model
In our implementation of the Axelrod’s Metanorms Model we used only 

three agents: turtles, patches and the observer. From these, only turtles and 
the observer had function in the simulation. The turtles were the agents 
who behaved accordingly to the set of actions defined in the original model 
(described earlier), and the observer was the agent handling all instructions 
from the code to the turtles, as by default in any NetLogo simulation. The 
world consisted of a 16x16 grid made of patches where the turtles stood 
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on, and at every tick one turtle had four opportunities for defect, as well as 
other turtles had the opportunity to punish the defector or punish a shirker. 
The main global variables were the number of agents, the S parameter 
and the payoffs values. The S parameter was implemented by the seen? 
variable defined by a random number ranging from 0 to 1. The number of 
agents and the payoffs were set up to the Axelrod’s model default values, 
but we also implemented sliders to manipulate these values. Finally, as by 
NetLogo default, we added Setup and some Go buttons to initialize and 
control simulation flow, respectively.

Definition of turtle-own variables
In the NetLogo context, an agent has its own variables which define 

their form, color, position and other properties. Some agent variables like 
form, color, position and movement are built-in variables that can be ma-
nipulated, but others are custom. Most of the custom variables control the 
agent's actions, and for the case of Axelrod’s model implementation, they 
controlled the decision of the agents. As in the Axelrod’s model, agents have 
to decide whether or not to defect, so it is necessary that each agent has a 
variable that defines its tendency to defect (boldness). Similarly, an agent 
must have a variable that defines its tendency to punish (vengefulness), 
and finally, a variable that stores the payoffs produced after each decision 
(score). Figure 1 represents the initial condition in which the agents and 
their variables are created. Different from the original model, the boldness 
and vengefulness variables are initialized with random numbers from the 
interval [0,1]. The variable score is initialized as zero.

Figure 1. Definition of the agent variables. Each agent has two main va-
riables, boldness or its tendency to defect, and vengefulness or its tendency 
to punish.
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Simulation procedures

Figure 2. Algorithm structure of the Norms and Metanorms game. S repre-
sents the global variable seen?, letters i, j and k represent different agent 
sets and roles. Person-like shapes graphically represent agents and adjacent 
numbers represent their scores.

The simulation algorithm is depicted in Figure 2. Once the environment 
has been initialized (time 0), an agent i is randomly selected to choose 
whether or not to defect by comparing its boldness (Bi) versus a generated 
random number S (seen? variable represented by a flipped coin). If its 
boldness is greater than S, then the agent defects, otherwise it does not 
defect. Once an agent defects, the hurt payoff (-1) is assigned for each other 
agent and the defection benefit payoff (3) is assigned to the defector. After 
that, the Norms game starts with another agent (j) randomly selected to 
choose whether or not to punish the defector. First is evaluated if agent j 
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saw agent i defecting with the probability S. If j observes i, j has to decide 
whether or not to punish i with the probability Vi. If j decides to punish 
i, the enforcement cost and punishment payoffs are calculated for j and i, 
respectively. Finally, when an agent ignores a defection the Metanorms 
game starts by randomly selecting another agent (k) to choose whether 
or not to punish who ignored the defection, and a similar procedure to 
the Norm game occurs. A run stops when all agents had the opportunity 
to defect four times, after that, the total scores are computed and the best 
agents will have the opportunity to transmit their own variable values to 
offspring, following a genetic algorithm process.

The genetic algorithm is an evolutionary dynamic procedure in which 
the best agents (in terms of their scores) will be selected to compose the 
next generation, including not only the selection of who has the oppor-
tunity to transmit their “genetic” information but also the way in which 
this information will be passed to the offspring (reproduction). Axelrod 
proposed that it could be interpretated as an asexual reproduction, because 
the agents generate offspring with identical parameters, but the process 
of transmiting “genetic” information could be improved if, in addition to 
asexual reproduction, procedures which emulate sexual reproduction were 
included. These procedures are called crossover reproduction, and they 
consist of mixing the parameters of the two agents to generate an offspring.

Here the two types of reproduction were implemented, along with 
mutation, and a new generation was composed of a set of the best agents 
which remain after the generation, a set of agents created by the crossover 
of the best, and a group of totally new agents. The process of mutation is 
done by randomly selecting an agent (with a probability of 0.01) of the 
new generation and changing one of their parameters. In our case, the 
best five agents remain in the population, and their values of boldness 
and vengefulness are mixed to create new agents following the crossover 
procedure. For this, two agents of the best five are randomly selected to 
produce two new agents, one of them will have the boldness of the first 
selected agent and the vengefulness of the other, and so on. After that, the 
new generation will be formed by the best five agents of the last generation, 
ten agents from the crossover, and five completely new agents. 

Two experiments were performed through the BehaviorSpace tool. The 
first one aimed to replicate the results of Axelrod (1986) which evaluated 
the effects of a metanorms procedure on the establishment of norms. The 
second one evaluated the effects of changes in the enforcement cost and in 
the S parameters over total defections. All agents and variables were set 
up by the original model defaults, except when cost was manipulated in 
Experiment 2. The experiments were carried out in NetLogo version 6.1.1. 
For those interested, the source code of the model implementation is avai-
lable on GitHub at the following address: https://github.com/julian-tejada/
Meta-norms_game/.
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Model implementation and experiment results
The interface of the NetLogo Metanorms Model implementation is 

presented in Figure 3 where the different elements for controlling the 
model parameters are specified. The Go button runs the simulation for only 
one agent, the go20 for one generation of agents, and the go*100, runs 100 
generations of agents. By all the other elements (the switcher and sliders) 
it is possible to change the number of agents and generation duration, as 
well as the values of the defect benefit, hurt of defection, enforcement cost 
and punishment. Also, different charts were set up to follow the dynamics 
of agent’s behaviors across the simulations.

Figure 3. Screenshot of the NetLogo implementation of the Norms and 
Metanorms game. In A, the NetLogo interface with the elements that control 
the simulation runs: 1. Control buttons to set up and run the simulation; 2. 
Switcher to turn Metanorms game on or off; 3. Slider to define the number 
of agents and the number of agents decisions which conform a genera-
tion; 5. Slider to define the value of the seen? variable; 6. World in which 
the environment and agents are instantiated; 7. Chart of the evolution of 
boldness and vengefulness variables across the generations; 8. Chart of the 
number of defections by generation; 9. Chart of scores by generation; and 
10. Scatter plot of boldness versus vengefulness across generations. In B, 
the NetLogo Interface after 100 generations of the Norms game.
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Regarding the first experiment, the NetLogo implementation of the 
Metanorms Model reproduced the original model (Axelrod, 1986) results 
and the results of other replications (Matthews, 2016; Prietula & Conway, 
2009), by showing similar patterns for both boldness and vengefulness in 
the Norms and Metanorms games. After 100 generations run, the average 
boldness values were higher than vengefulness values in the Norms game 
(see Fig. 4A and Fig. 4B), while in the Metanorms game these patterns 
were reversed (Fig. 4C and Fig. 4D). The same pattern was observed for the 
number of defections (see Fig. 5), indicating that metanorm enforcement 
suppresses defections by significantly reducing average boldness in the 
population over repeated iterations. This effect is more prominent after 
long simulation runs. Results from 1000 generations run exhibits a similar 
pattern found by Prietula and Conway (2009) evidencing a reduction in 
the average of boldness and a high increase in the average of vengefulness 
in the Metanorms game (see Fig 6).

Figure 4. Evolution of boldness and vengefulness values across 100 gene-
rations for the norm (A) and metanorm (C) games. Average boldness and 
vengefulness values after 100 generations of the Norms (B) and Metanorms 
(D) games.
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Figure 5. (A) Evolution of the number of defections across 100 generations 
of the Norms and Metanorms games. (B) Average number of defections 
across 100 generations of the Norms and Metanorms games.

Figure 6. Average strategy values for Norms and Metanorms games after 
1000 generations.

Regarding the second experiment, the enforcement cost parameter 
varied from 0 to 9 and observed its effect on the average number of defec-
tions after 100 generations for each of the cost values (Figure 7). Increasing 
the costs of cIBCs over the value of 5 leads to a complete breakdown of 
cooperation, ceteris paribus. The effects on norms, however, are much less 
drastic, with desertion rate stabilizing over the value of 3. This suggests 
that Metanorms are much more sensible to their cost of enforcement than 
Norms.
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Figure 7. Average number of defections for 100 generations in which the 
values of enforcement cost were changed from 0 up to 9. The shadow re-
presents standard error.

The other parameter variation was on the range of values of the seen? 
variable (S in Figure 2). Values varied from 0.25 to 5, and observed its effects 
over the average number of defections after 100 generations run for each 
value (Figure 8). Higher values indicate that the transgressions are more 
visible, hence, they have higher lower probability of being emitted (only 
agents with high values of boldness will defect) and higher probability of 
being punished (more surrounding agents will observe the transgressions). 
Our results indicate that metanorms are most needed for seldom seen 
transgressions, where they maintain Defections at clearly lower levels 
than with norms alone. The easier to observe the transgression, the less 
practical relevance a metanorm has.

Figure 8. Average number of defections for 100 generations in which the 
values of S parameter were changed from 0.25 up to 5. The shadow re-
presents standard error.
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Discussion

Our goals in this paper were to develop a NetLogo implementation of 
the Norms and Metanorms game (Axelrod 1986) and to propose an inter-
pretation from a Skinnerian perspective of cultural evolution, as indicated 
in the Introduction. The discussion will be divided in three parts. First, the 
technical details of the model will be discussed. Then, the uses and benefits 
of model building for Behavior Analysis is briefly considered, before the 
parallels between the present model and the Skinnerian account on the 
evolution of cultural practices is examined closely.

Due to the lack of formal clarification in the original model (Axelrod, 
1986), the present implementation required adjustments in some arbitrary 
assumptions and procedures of the model. The main alterations were car-
ried out in the range of values that the boldness and vengefulness variables 
could assume, and in the evolutionary procedure by updating the genetic 
algorithm, to include, besides mutation, a crossover reproduction. This 
made possible amplify the parameter space of the main agent variables 
and allowed parameter mixing in the new generations, giving the model 
more granularity and stability. Despite that, the new model fits well with 
the previous results of other replications (Prietula & Conway, 2009), presen-
ting similar dynamics on the vengefulness and boldness variables, as well 
as the number of defections for the Norms and Metanorms games. As the 
model source code is available on a GitHub repository, it is possible other 
researchers interested in this kind of implementation reproduce the main 
findings and make further extensions of the model. The available version 
permits a flexible configuration of different parameters and observation 
of their effects over the agents behavior.

Regarding the interpretation of the model, in the introduction of his 
book aptly called “Generative Social Science: studies in agent-based compu-
tational modelling”, Epstein (2006) states that to understand the emergence 
of macroscopic societal regularities, one must answer the question: “How 
could the decentralized local interactions of heterogeneous autonomous 
agents generate the given regularity?” (Epstein, 2006, p. 5)

In the model herein presented, the question could be restated as follows:

“How could a decentralized group of heterogeneous agents interact with 
the environment and with themselves to generate either norm compliance 
or norm defiance, a group regularity?”

This question can be addressed by different types of scientifically sound 
answers, and it is indeed the case. Psychology and Social Sciences in general, 
Behavior Analysis included, have traditionally answered this question by 
creating verbal theories, verbal descriptions of events, concepts and their 
entanglement (Smaldino, 2020). Despite the mastery in writing skills by 
some of Psychology's most prominent writers, ordinary language has limi-
tations as to its vagueness and ambiguity. Even when a precise scientific 
language is adopted, most verbal accounts make it difficult to understand 
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the premises and fine details of their predictions (Gilbert & Terna, 2000). In 
the context of Evolutionary Biology, Servedio et. Al. (2014) state that verbal 
models in his field lack the clarity and precision needed to account for the 
complexity of the phenomenon. The authors champion the use of models, in 
their case mathematical models, as a way of carrying out “Proof-of-Concept 
Models”, models inspired by verbal theories but with explicit assumptions. 
In this way, these models can be used to judge the appropriateness of verbal 
theories, precisely describing results of the events and relationships they 
propose.

Consider this excerpt of verbal theory: “men act upon the world, and 
change it, and are changed in turn by the consequences of their action.” 
(Skinner, 1957). It is the opening line of Skinner's most important work and 
it puts forth the basic tenet of Radical Behaviorism: behavior is the result 
of ongoing interactions of an organism with its environment. As enlighte-
ning and insightful an idea as it is, a verbal formulation of such complex 
phenomenon is bound to be incomplete, leaving the intricate details of 
the continuous dynamics untouched (Resnick, 1994). According to Ostrom 
(1988), there are two more “symbol systems'' available to the social scientist: 
mathematical models and computational models. Mathematical models are 
well established in the Skinnerian community (e.g., Baum´s Generalized 
Matching Law, 1974) and their goal is precisely to establish the relevant 
elements in a situation, as well as the nature of their relationships, and 
then to observe their interaction to establish a benchmark against which 
empirical data is compared to. Computational models, on the other hand, 
are extremely rare. McDowell and colleagues have developed an intriguing 
and fruitful research project simulating behavior selection in a computer 
environment (McDowell, 2013, 2017, McDowell & Klapes, 2019). Their im-
plementations have to make explicit the implicit assumptions adopted by 
verbal theories and in the process they are able to not only specify these 
parameters, but also show how the parameters interact when the programs 
run, and to determine the limits of the model, such as how much variation 
is needed for a selection-by-reinforcement to be adaptive (McDowell, 2017). 
Agent-based modeling has the same benefits, and an additional one of doing 
away with most algebraic skills necessary for mathematical model building.

In a series of papers discussing the role of models in Science and Behavior 
Analysis, Marr (1992, 1993, 1996, 2009) advocates a Dynamic Systems appro-
ach to behavioral studies, with a clear focus on descriptions of behavior 
change and the conditions bringing about that change. Dynamic Systems, 
such as social practices, are particularly difficult to be verbally described 
because they engender different levels of organization (individual, group 
and structural/ situational); different ways in which these levels interact; 
and these systems have memory, that is, past events determine the state of a 
system on any given time. All three challenges are accommodated by Agent 
Based Modelling, such as the one presented here (Smaldino, Calanchini e 
Pickett, 2015). In the present model, individual behavioral propensities are 
formally defined, the interactions between agents are established and the 
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structure of their environment is clearly determined. At the beginning of 
a run, it is impossible to predict exactly when and how the behavior of the 
population will tend to norm conformance just looking at one agent or even 
at the agents mean propensities, without considering their environment 
and how they interact.

In our model, with the right parameters we can observe the emergen-
ce of norm compliance in a scenario where agents are following simple 
specified rules for their action. The concept of emergence has received a 
lot of attention by researchers interested in the study of cultural evolution. 
Although it is beyond the scope of this paper to present a full account of 
the debate (see Krispin, 2006, for a critical position), suffice it to say that the 
emergent property of the system is fully accounted for by the specifications 
of the model. Nothing else needs to be added. The emergent property of 
our model is simply “arising from the local interaction of agents” (Epstein 
& Axtell, 1996, p. 35). In behavior analytic terms, the norm compliance 
pattern observed in our model is the product of eIBCs together with cIBCs, 
and changing any parameter of each contingency, may have dramatic effects 
on the probability of compliance emergence: as shown in Figure 8, once 
the cost of sanctioning exceeds 5, the rate of defections sharply increases.

It is important to underscore that notwithstanding our model being 
able to generate a macro level phenomenon, it does not make its basic as-
sumptions necessarily true. ABM can provide just sufficient explanations, not 
necessary ones. In fact, any complex phenomenon composed of interplay 
between levels may be implemented in different ways on lower levels (a 
property called multi-realizability, Sawyer, 2005). Epstein (2014) calls such 
models candidate models, and specifies that an empirical research agenda 
must be conducted “figuring out which of the microspecifications is most 
tenable empirically. In the context of social science, this may dictate that 
competing micro specifications with equal generative power be adjudicated 
experimentally—perhaps in the psychology lab” (p. 43, emphasis added).

Conclusion

This brings us to our final comment: the complementary relationship 
between ABM and empirical research. Natural sciences and engineering 
have adopted computer simulations as methods for a long time (Zeigler, 
1976) focusing on prediction, such as predicting the position of a space sta-
tion based on simulations of its trajectory. On Social Sciences, however, the 
principal value of simulations seems to be on theory development (Gilbert 
& Terna, 2000). As mentioned above, proof-of-concept models may elucidate 
the adequacy of a proposed theory, while simple models like the one here 
presented may shed light on relevant parameters for a phenomenon of 
interest to occur. The complexity of a model is closely linked to available 
knowledge in a field, and when entering an area full of controversy and 
conflicting results, as is the case of evolution of cultural practices, it is ad-
visable to start with a simple model.
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